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Chemical tuning of the thermal decomposition temperature
of inorganic hydrides: Computational aspects
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Abstract

We show that chosen computationally-derived molecular features along several atomic descriptors of the metallic center, as well as the
value of the standard redox potential of the metal center,E0, allow for the semiquantitative estimate of the ease of metal–hydrogen bond
rupture for binary and multinary hydrides. Utility ofE0 is illustrated for Group 2 hydrides, and further extended to complex systems such
as amido- (NH−), imido- (NH2−) and methyl anion (CH−) model complexes of metal cations bound to tetrahydridoborate anion (BH−).
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uch considerations may be utilized for the tuning of the thermal decomposition temperature,Tdec, of the chemical hydrogen store, and for
esign of thelow-temperature hydrogen fuel source, via deliberate choice of chemical elements constituting the hydrogen storage m
2005 Elsevier B.V. All rights reserved.
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. Main text

For a chemist, the reactions taking part in decomposi-
ion and recharging of a hydrogen store, are the reduction–
xidation (redox) reactions:

+ n

2
H2 → Mn+Hn (oxidative addition) (1a)

n+Hn → M + 1
2nH2 (reductive elimination) (1b)

here M stands for an element, a lower binary hydride, a
ernary one, or even a more complex entity.

Using the established formalism of the redox reaction,
e have recently shown that the thermal decomposition tem-
erature,Tdec, is nicely correlated with the standard redox
otential for the metal cation/metal redox couple,E0, and
ith the standard enthalpy of decompositon,�H0, for a vast

amily of binaries, and for an impressively large span of the
dec values (> 850◦C) [1]. We have also argued that tun-

ng of theTdec value is further possible via deliberate choice
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of the stoichiometric ratio and of Lewis acid/base chara
of the chemical elements constituting the multinary hydr
[1]. Thus, evidence was delivered that the kinetic asp
of thermal decomposition are in fact often interrelated w
the thermodynamic parameters for this process, as lo
a broad stability range is considered. Large thermodyn
stability of a hydridetypically pushes up the energy barr
for dihydrogen evolution from a material, and pulls down
energy barrier for H2 reabsorption, while the latter two a
also correlated with each other.

The particularly usefulTdecversusE0 relationship, vividly
illustrated below for the homologic Ba, Sr, Ca, Mg, Be
nary hydride series[2], will now be supplemented by DF
quantum mechanical computations for MH2 molecules.

Table 1shows chosencomputed molecular parameters
(the equilibrium M H bond distance,R0; the energy o
HOMO and LUMO orbitals,EHOMO andELUMO, and the
HOMO/LUMO gap,�EHL; the Mulliken charge on H and M
atoms,q(H) andq(M); the force constants for the symmet
and asymmetric stretching mode,f(σg) andf(σu)),experimen-
tal atomic parameters describing M or M2+ (configuration
energy, CE(M)[3]; Mulliken electronegativity,µ(M2+), and
Pearson hardnessη(M2+) [4]; ionic radius,R(M2+); softness
925-8388/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
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Table 1
Comparison of chosen (experimental and theoretical) atomic, molecular and condensed-phase parameters, which might serve as predictors of theTdecvalue for
the solid dihydrides of Group 2 elements

Parameter BaH2 SrH2 CaH2 MgH2 BeH2

Molecular
R0(M H)a(Å) 2.528 2.308 2.121 1.704 1.327
EHOMO

a (au) −0.182 −0.202 −0.221 −0.259 −0.319
ELUMO

a (au) −0.063 −0.058 −0.046 −0.033 −0.040
�EHL

a (au) 0.119 0.144 0.175 0.226 0.279
q(H)a (e) −0.502 −0.390 −0.360 −0.268 −0.148
q(M)a (e) +1.004 +0.780 +0.720 +0.536 +0.296
f (σg)a (mDyneÅ−1) 0.545 0.691 0.899 1.536 2.476
f (σu)a (mDyneÅ−1) 0.637 0.768 0.920 1.712 3.617

Atomic
CE(M)b (eV) 5.21 5.70 6.11 7.65 9.32
µ(M2+)c (eV) 22.8 27.3 31.6 47.6 86.1
η(M2+)c (eV) 12.8 16.3 19.7 32.5 67.8
R(M2+)e (Å) 1.35 1.13 0.99 0.65 0.31
σ(M)d (eV−1) 0.51 0.48 0.45 0.38 0.30
Ebind(ns)e (eV) ? 6.6 7.0 9.0 10.0

Solution
E0(M2+/M0)e (V) −2.92 −2.89 −2.84 −2.36 −1.97

Solid state
Tdec(MH2(s))f (◦C) 675 675 600 327 250
�H0

dec(MH2(s))f (kJ mol−1) 177 180.3 181.5 75.2 18.9

For detailed description, see text.
a Our computations for linear MH2 molecules.
b From ref.[3].
c Values from ref.[4], based on experimental data.
d Values from ref.[2a].
e Values fromhttp://www.webelements.com; E0 values for acidic aqueous solutions.
f From ref.[1].

of M, σ(M); and binding energy of valence ns electrons of
a metal M,Ebind(ns)), the value of standard redox potential
for the M2+/M0 redox pair in the acidic aqueoussolution,
E0(M2+/M0), and two important parameters describing the
thermodynamic and kinetic stability of a hydride in asolid
state (temperature of the thermal decomposition,Tdec; and
enthalpy of decomposition,�Hdec).

As it may be seen fromTable 1, theTdec value correlates
monotonically with all molecular and atomic parameters, ex-
cept forELUMO. The following simple picture may now be
built on the basis of quantum mechanical computations: along
with an increasing electronegativity and hardness of a metal,
M, and its cation, M2+ (in direction from Ba to Be), the
energy of the valence orbitals of M decreases and orbitals
become more contracted; this causes the increase of affinity
of M2+ towards electron attachment, i.e. the increase of a cor-
respondingE0 value, and a substantial charge withdrawal by
M2+ from hydride anion in a MH2 molecule; thus the ionicity
of the M H bonds, as well as a factual negative charge on
the H center (and its electronic polarizability) decrease. The
stronger binding of 1s electrons to the H nucleus for Be than
for Ba is also revealed by the decreasing energy of HOMO
orbital (which is in fact centered mainly on H atoms) in
MH2 molecules. In consequence, one could view the situation
that H− starts to resemble H0 more-and-more as the metal’s

electronegativity increases; analogous thing happens in the
MH2 solids, which are – however – characterized by larger
ionicity of the MH bonds[5] and dramatically increased
thermodynamic stability[6], than in the corresponding
molecules. In consequence (since in the course of the reaction
described by Eq.(1b), the M H bonds need to be broken –
or at least significantly elongated), the energy barrier for H2
evolution in a solid,�E#, decreases[7], andTdecalso thereby
decreases[8]. Thus, simple theoretical arguments whose ori-
gins are in molecular orbital (MO) theory[9], help to explain
the monotonicTdec versusE0 relationship[1].

The validity of the screenplay outlined above allows the
use of many simple molecular or even atomic parameters as
valuable signatures of the ease of metal–hydrogen bond rup-
ture for many molecular and solid binary hydrides[10].In
many cases,E0 helps to predictTdecquantitatively with suf-
ficient reliability. And what about the multinary materials?
Let us now explore the systems which contain the tetrahydri-
doborate (i.e. borohydride) anion as source of hydrogen, and
a variety of main group, transition and post-transition metal
centers, ligated by isoelectronic Lewis bases, L, of relatively
similar strength (L = NH2−, NH2− or CH3

−) to equilibrate
the total charge of this species to−1.

Fig. 1presents the graph of the bridging BH bond length
(and not for the terminal BH bonds) plotted versus theE0

http://www.webelements.com
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Fig. 1. Illustration of the relationship between the value of the longestcom-
puted BH bond length and theexperimental value of the standard redox po-
tential (in basic aqueous solution) of the metallic center entering the molec-
ular complex,E0 (see text and Supplementary Material for details). The
progressive elongation of the bridging BH bond is seen as the metal cation
becomes stronger and stronger oxidant, as compared to the computed BH
bond length in a free BH−4 anion (1.241̊A). Chosen cations are explicitly
listed which belong to the molecules studied.

value for the metal center (i.e. for the most typical redox
pair associated with the oxidation state studied here). The
numerical data is given inTable S1 in Supplementary data.

It turns out that as the redox potential of the metal center
increases, the bridging BH bond length of the attached BH4

−
anion becomes progressively longer. This result agrees with
simple chemical intuition of the redox reaction associated
with the liberation of H2:

[Mn+Ln]HBH3
− → [M(n−1)+Ln]− + 1

2 H2 + 1
2 B2H6, (2)

since the value of the bridging BH bond length informs of
the early stage of the BH bond rupture reaction. As the metal
center becomes a better electron acceptor, the charge densit
is transferred from BH4− anion onto the [Mn+Ln] one, and
the bridging BH bond which participates in the three-center
M· · ·H· · ·B bonding, becomes weaker and more ionic[11].
It thus appears thatE0 can serve as a valuable predictor of the
bond length of the bridging BH bond for a large family of sys-
tems, despite the fascinating variety of transition metal boro-
hydride chemistry. We expect that the most potent oxidizers
should release H2 most easily[12] (although most probably
irreversibly), in agreement with our earlier observations[1].
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Appendix A. Supplementary data

Supplementary data associated with this article can
be found, in the online version, at10.1016/j.jallcom.
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